3.1099 \(\int \frac{1}{\sqrt{d x} \sqrt{a+b x^2+c x^4}} \, dx\)

Optimal. Leaf size=145 \[ \frac{2 \sqrt{d x} \sqrt{\frac{2 c x^2}{b-\sqrt{b^2-4 a c}}+1} \sqrt{\frac{2 c x^2}{\sqrt{b^2-4 a c}+b}+1} F_1\left (\frac{1}{4};\frac{1}{2},\frac{1}{2};\frac{5}{4};-\frac{2 c x^2}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}\right )}{d \sqrt{a+b x^2+c x^4}} \]

[Out]

(2*Sqrt[d*x]*Sqrt[1 + (2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*AppellF1[
1/4, 1/2, 1/2, 5/4, (-2*c*x^2)/(b - Sqrt[b^2 - 4*a*c]), (-2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])])/(d*Sqrt[a + b*x^2
 + c*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.122257, antiderivative size = 145, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.083, Rules used = {1141, 510} \[ \frac{2 \sqrt{d x} \sqrt{\frac{2 c x^2}{b-\sqrt{b^2-4 a c}}+1} \sqrt{\frac{2 c x^2}{\sqrt{b^2-4 a c}+b}+1} F_1\left (\frac{1}{4};\frac{1}{2},\frac{1}{2};\frac{5}{4};-\frac{2 c x^2}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}\right )}{d \sqrt{a+b x^2+c x^4}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[d*x]*Sqrt[a + b*x^2 + c*x^4]),x]

[Out]

(2*Sqrt[d*x]*Sqrt[1 + (2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*AppellF1[
1/4, 1/2, 1/2, 5/4, (-2*c*x^2)/(b - Sqrt[b^2 - 4*a*c]), (-2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])])/(d*Sqrt[a + b*x^2
 + c*x^4])

Rule 1141

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^2 +
 c*x^4)^FracPart[p])/((1 + (2*c*x^2)/(b + Rt[b^2 - 4*a*c, 2]))^FracPart[p]*(1 + (2*c*x^2)/(b - Rt[b^2 - 4*a*c,
 2]))^FracPart[p]), Int[(d*x)^m*(1 + (2*c*x^2)/(b + Sqrt[b^2 - 4*a*c]))^p*(1 + (2*c*x^2)/(b - Sqrt[b^2 - 4*a*c
]))^p, x], x] /; FreeQ[{a, b, c, d, m, p}, x]

Rule 510

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a^p*c^q
*(e*x)^(m + 1)*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, -((b*x^n)/a), -((d*x^n)/c)])/(e*(m + 1)), x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{d x} \sqrt{a+b x^2+c x^4}} \, dx &=\frac{\left (\sqrt{1+\frac{2 c x^2}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}}\right ) \int \frac{1}{\sqrt{d x} \sqrt{1+\frac{2 c x^2}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}}} \, dx}{\sqrt{a+b x^2+c x^4}}\\ &=\frac{2 \sqrt{d x} \sqrt{1+\frac{2 c x^2}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}} F_1\left (\frac{1}{4};\frac{1}{2},\frac{1}{2};\frac{5}{4};-\frac{2 c x^2}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}\right )}{d \sqrt{a+b x^2+c x^4}}\\ \end{align*}

Mathematica [A]  time = 0.0812958, size = 171, normalized size = 1.18 \[ \frac{2 x \sqrt{\frac{-\sqrt{b^2-4 a c}+b+2 c x^2}{b-\sqrt{b^2-4 a c}}} \sqrt{\frac{\sqrt{b^2-4 a c}+b+2 c x^2}{\sqrt{b^2-4 a c}+b}} F_1\left (\frac{1}{4};\frac{1}{2},\frac{1}{2};\frac{5}{4};-\frac{2 c x^2}{b+\sqrt{b^2-4 a c}},\frac{2 c x^2}{\sqrt{b^2-4 a c}-b}\right )}{\sqrt{d x} \sqrt{a+b x^2+c x^4}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/(Sqrt[d*x]*Sqrt[a + b*x^2 + c*x^4]),x]

[Out]

(2*x*Sqrt[(b - Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b
 + Sqrt[b^2 - 4*a*c])]*AppellF1[1/4, 1/2, 1/2, 5/4, (-2*c*x^2)/(b + Sqrt[b^2 - 4*a*c]), (2*c*x^2)/(-b + Sqrt[b
^2 - 4*a*c])])/(Sqrt[d*x]*Sqrt[a + b*x^2 + c*x^4])

________________________________________________________________________________________

Maple [F]  time = 0.063, size = 0, normalized size = 0. \begin{align*} \int{{\frac{1}{\sqrt{dx}}}{\frac{1}{\sqrt{c{x}^{4}+b{x}^{2}+a}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(d*x)^(1/2)/(c*x^4+b*x^2+a)^(1/2),x)

[Out]

int(1/(d*x)^(1/2)/(c*x^4+b*x^2+a)^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{c x^{4} + b x^{2} + a} \sqrt{d x}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d*x)^(1/2)/(c*x^4+b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*x^4 + b*x^2 + a)*sqrt(d*x)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{4} + b x^{2} + a} \sqrt{d x}}{c d x^{5} + b d x^{3} + a d x}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d*x)^(1/2)/(c*x^4+b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^4 + b*x^2 + a)*sqrt(d*x)/(c*d*x^5 + b*d*x^3 + a*d*x), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{d x} \sqrt{a + b x^{2} + c x^{4}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d*x)**(1/2)/(c*x**4+b*x**2+a)**(1/2),x)

[Out]

Integral(1/(sqrt(d*x)*sqrt(a + b*x**2 + c*x**4)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{c x^{4} + b x^{2} + a} \sqrt{d x}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d*x)^(1/2)/(c*x^4+b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(c*x^4 + b*x^2 + a)*sqrt(d*x)), x)